Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2011 Sep 1;51(5):1000-13. doi: 10.1016/j.freeradbiomed.2011.05.017. Epub 2011 May 25.

Vitamins C and E: beneficial effects from a mechanistic perspective.

Author information

  • 1Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA. maret.traber@oregonstate.edu

Abstract

The mechanistic properties of two dietary antioxidants that are required by humans, vitamins C and E, are discussed relative to their biological effects. Vitamin C (ascorbic acid) is an essential cofactor for α-ketoglutarate-dependent dioxygenases. Examples are prolyl hydroxylases, which play a role in the biosynthesis of collagen and in down-regulation of hypoxia-inducible factor (HIF)-1, a transcription factor that regulates many genes responsible for tumor growth, energy metabolism, and neutrophil function and apoptosis. Vitamin C-dependent inhibition of the HIF pathway may provide alternative or additional approaches for controlling tumor progression, infections, and inflammation. Vitamin E (α-tocopherol) functions as an essential lipid-soluble antioxidant, scavenging hydroperoxyl radicals in a lipid milieu. Human symptoms of vitamin E deficiency suggest that its antioxidant properties play a major role in protecting erythrocyte membranes and nervous tissues. As an antioxidant, vitamin C provides protection against oxidative stress-induced cellular damage by scavenging of reactive oxygen species, by vitamin E-dependent neutralization of lipid hydroperoxyl radicals, and by protecting proteins from alkylation by electrophilic lipid peroxidation products. These bioactivities bear relevance to inflammatory disorders. Vitamin C also plays a role in the function of endothelial nitric oxide synthase (eNOS) by recycling the eNOS cofactor, tetrahydrobiopterin, which is relevant to arterial elasticity and blood pressure regulation. Evidence from plants supports a role for vitamin C in the formation of covalent adducts with electrophilic secondary metabolites. Mechanism-based effects of vitamin C and E supplementation on biomarkers and on clinical outcomes from randomized, placebo-controlled trials are emphasized in this review.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
21664268
[PubMed - indexed for MEDLINE]
PMCID:
PMC3156342
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk