Send to:

Choose Destination
See comment in PubMed Commons below
Ecology. 2011 May;92(5):1027-35.

Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens.

Author information

  • 1Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.


The net effects of soil biota on exotic invaders can be variable, in part, because net effects are produced by many interacting mutualists and antagonists. Here we compared mutualistic and antagonistic biota in soils collected in the native, expanded, and invasive range of the black locust tree, Robinia pseudoacacia. Robinia formed nodules in all soils with a broad phylogenetic range of N-fixing bacteria, and leaf N did not differ among the different sources of soil. This suggests that the global expansion of Robinia was not limited by the lack of appropriate mutualistic N-fixers. Arbuscular mycorrhizal fungi (AMF) from the native range stimulated stronger positive feedbacks than AMF from the expanded or invasive ranges, a biogeographic difference not described previously for invasive plants. Pythium taxa collected from soil in the native range were not more pathogenic than those from other ranges; however, feedbacks produced by the total soil biota were more negative from soils from the native range than from the other ranges, overriding the effects of AMF. This suggests that escape from other pathogens in the soil or the net negative effects of the whole soil community may contribute to superior performance in invaded regions. Our results suggest that important regional evolutionary relationships may occur among plants and soil biota, and that net effects of soil biota may affect invasion, but in ways that are not easily explained by studying isolated components of the soil biota.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk