Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2011 Jul 20;133(28):10920-7. doi: 10.1021/ja203022c. Epub 2011 Jun 27.

Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS.

Author information

  • 1Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.


We report promising thermoelectric properties of the rock salt PbSe-PbS system which consists of chemical elements with high natural abundance. Doping with PbCl(2), excess Pb, and Bi gives n-type behavior without significantly perturbing the cation sublattice. Thus, despite the great extent of dissolution of PbS in PbSe, the transport properties in this system, such as carrier mobilities and power factors, are remarkably similar to those of pristine n-type PbSe in fractions as high as 16%. The unexpected finding is the presence of precipitates ~2-5 nm in size, revealed by transmission electron microscopy, that increase in density with increasing PbS concentration, in contrast to previous reports of the occurrence of a complete solid solution in this system. We report a marked impact of the observed nanostructuring on the lattice thermal conductivity, as highlighted by contrasting the experimental values (~1.3 W/mK) to those predicted by Klemens-Drabble theory at room temperature (~1.6 W/mK). Our thermal conductivity results show that, unlike in PbTe, optical phonon excitations in PbSe-PbS systems contribute to heat transport at all temperatures. We show that figures of merit reaching as high as ~1.2-1.3 at 900 K can be obtained, suggesting that large-scale applications with good conversion efficiencies are possible from systems based on abundant, inexpensive chemical elements.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk