Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011;6(5):e20330. doi: 10.1371/journal.pone.0020330. Epub 2011 May 27.

Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells.

Author information

  • 1Department of Functional and Molecular Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America.

Abstract

Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm(3) and 178 mm(3) respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm(3)and 30 mm(3). We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging.

PMID:
21647423
[PubMed - indexed for MEDLINE]
PMCID:
PMC3103544
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk