Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11034-9. doi: 10.1073/pnas.1019490108. Epub 2011 Jun 6.

Artificial selection for a green revolution gene during japonica rice domestication.

Author information

  • 1Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.

Abstract

The semidwarf phenotype has been extensively selected during modern crop breeding as an agronomically important trait. Introduction of the semidwarf gene, semi-dwarf1 (sd1), which encodes a gibberellin biosynthesis enzyme, made significant contributions to the "green revolution" in rice (Oryza sativa L.). Here we report that SD1 was involved not only in modern breeding including the green revolution, but also in early steps of rice domestication. We identified two SNPs in O. sativa subspecies (ssp.) japonica SD1 as functional nucleotide polymorphisms (FNPs) responsible for shorter culm length and low gibberellin biosynthetic activity. Genetic diversity analysis among O. sativa ssp. japonica and indica, along with their wild ancestor O. rufipogon Griff, revealed that these FNPs clearly differentiate the japonica landrace and O. rufipogon. We also found a dramatic reduction in nucleotide diversity around SD1 only in the japonica landrace, not in the indica landrace or O. rufipogon. These findings indicate that SD1 has been subjected to artificial selection in rice evolution and that the FNPs participated in japonica domestication, suggesting that ancient humans already used the green revolution gene.

Comment in

  • Paleo-Green Revolution for rice. [Proc Natl Acad Sci U S A. 2011]
PMID:
21646530
[PubMed - indexed for MEDLINE]
PMCID:
PMC3131315
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk