Send to:

Choose Destination
See comment in PubMed Commons below
Am J Bot. 2006 Oct;93(10):1546-65. doi: 10.3732/ajb.93.10.1546.

Plant biomechanics in an ecological context.

Author information

  • 1School of Biological Sciences, Monash University, Victoria 3800, Australia;


Fundamental plant traits such as support, anchorage, and protection against environmental stress depend substantially on biomechanical design. The costs, subsequent trade-offs, and effects on plant performance of mechanical traits are not well understood, but it appears that many of these traits have evolved in response to abiotic and biotic mechanical forces and resource deficits. The relationships between environmental stresses and mechanical traits can be specific and direct, as in responses to strong winds, with structural reinforcement related to plant survival. Some traits such as leaf toughness might provide protection from multiple forms of stress. In both cases, the adaptive value of mechanical traits may vary between habitats, so is best considered in the context of the broader growth environment, not just of the proximate stress. Plants can also show considerable phenotypic plasticity in mechanical traits, allowing adjustment to changing environments across a range of spatial and temporal scales. However, it is not always clear whether a mechanical property is adaptive or a consequence of the physiology associated with stress. Mechanical traits do not only affect plant survival; evidence suggests they have downstream effects on ecosystem organization and functioning (e.g., diversity, trophic relationships, and productivity), but these remain poorly explored.

Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk