Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2011 Aug 15;57(4):1591-600. doi: 10.1016/j.neuroimage.2011.05.058. Epub 2011 May 27.

DISC1 is associated with cortical thickness and neural efficiency.

Author information

  • 1MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129-2000, USA.



Disrupted in schizophrenia 1 (DISC1) is known to play a major role during brain development and is a candidate gene for schizophrenia. Cortical thickness is highly heritable and several MRI studies have shown widespread reductions of cortical thickness in patients with schizophrenia. Here, we investigated the effects of variation in DISC1 on cortical thickness. In a subsequent analysis we tested whether the identified DISC1 risk variant is also associated with neural activity during working memory functioning.


We acquired structural MRI (sMRI), functional MRI (fMRI) and genotype data from 96 healthy volunteers. Separate cortical statistical maps for five single nucleotide polymorphisms (SNP) of DISC1 were generated to detect differences of cortical thickness in genotype groups across the entire cortical surface. Working-memory related load-dependent activation was measured during the Sternberg Item Recognition Paradigm and analyzed using a region-of-interest approach.


Phe allele carriers of the DISC1 SNP Leu607Phe had significantly reduced cortical thickness in the left supramarginal gyrus compared to Leu/Leu homozygotes. Neural activity in the left dorsolateral prefrontal cortex (DLPFC) during working memory task was increased in Phe allele carriers, whereas working memory performance did not differ between genotype groups.


This study provides convergent evidence for the effect of DISC1 risk variants on two independent brain-based intermediate phenotypes of schizophrenia. The same risk variant was associated with cortical thickness reductions and signs of neural inefficiency during a working memory task. Our findings provide further evidence for a neurodevelopmental model of schizophrenia.

Copyright © 2011 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk