Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Appl Physiol. 2012 Feb;112(2):605-16. doi: 10.1007/s00421-011-2005-1. Epub 2011 May 29.

Artificial gravity training reduces bed rest-induced cardiovascular deconditioning.

Author information

  • 1Cardiovascular Laboratory, Wyle Integrated Science and Engineering Group, NASA Johnson Space Center, Houston, TX 77058, USA. michael.b.stenger@nasa.gov

Abstract

We studied 15 men (8 treatment, 7 control) before and after 21 days of 6º head-down tilt to determine whether daily, 1-h exposures to 1.0 G(z) (at the heart) artificial gravity (AG) would prevent bed rest-induced cardiovascular deconditioning. Testing included echocardiographic analysis of cardiac function, plasma volume (PV), aerobic power (VO(2)pk) and cardiovascular and neuroendocrine responses to 80º head-up tilt (HUT). Data collected during HUT were ECG, stroke volume (SV), blood pressure (BP) and blood for catecholamines and vasoactive hormones. Heart rate (HR), cardiac output (CO), total peripheral resistance, and spectral power of BP and HR were calculated. Bed rest decreased PV, supine and HUT SV, and indices of cardiac function in both groups. Although PV was decreased in control and AG after bed rest, AG attenuated the decrease in orthostatic tolerance [pre- to post-bed rest change; control: -11.8 ± 2.0, AG: -6.0 ± 2.8 min (p = 0.012)] and VO(2)pk [pre- to post-bed rest change; control: -0.39 ± 0.11, AG: -0.17 ± 0.06 L/min (p = 0.041)]. AG prevented increases in pre-tilt levels of plasma renin activity [pre- to post-bed rest change; control: 1.53 ± 0.23, AG: -0.07 ± 0.34 ng/mL/h (p = 0.001)] and angiotensin II [pre- to post-bed rest change; control: 3.00 ± 1.04, AG: -0.63 ± 0.81 pg/mL (p = 0.009)] and increased HUT aldosterone [post-bed rest; control: 107 ± 30 pg/mL, AG: 229 ± 68 pg/mL (p = 0.045)] and norepinephrine [post-bed rest; control: 453 ± 107, AG: 732 ± 131 pg/mL (p = 0.003)]. We conclude that AG can mitigate some aspects of bed rest-induced cardiovascular deconditioning, including orthostatic intolerance and aerobic power. Mechanisms of improvement were not cardiac-mediated, but likely through improved sympathetic responsiveness to orthostatic stress.

PMID:
21626041
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk