Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9827-32. doi: 10.1073/pnas.1105714108. Epub 2011 May 26.

Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome.

Author information

  • 1Department of Chemistry, 418 Seeley G Mudd Building, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA.

Abstract

The crucial process of aminoacyl-tRNA delivery to the ribosome is energized by the GTPase reaction of the elongation factor Tu (EF-Tu). Advances in the elucidation of the structure of the EF-Tu/ribosome complex provide the rare opportunity of gaining a detailed understanding of the activation process of this system. Here, we use quantitative simulation approaches and reproduce the energetics of the GTPase reaction of EF-Tu with and without the ribosome and with several key mutants. Our study provides a novel insight into the activation process. It is found that the critical H84 residue is not likely to behave as a general base but rather contributes to an allosteric effect, which includes a major transition state stabilization by the electrostatic effect of the P loop and other regions of the protein. Our findings have general relevance to GTPase activation, including the processes that control signal transduction.

PMID:
21617092
[PubMed - indexed for MEDLINE]
PMCID:
PMC3116401
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk