Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2011 May 25;31(21):7729-36. doi: 10.1523/JNEUROSCI.1076-11.2011.

Auditory event-related response in visual cortex modulates subsequent visual responses in humans.

Author information

  • 1Department of Experimental Psychology, Carl von Ossietzky Universität, D-26129 Oldenburg, Germany.

Abstract

Growing evidence from electrophysiological data in animal and human studies suggests that multisensory interaction is not exclusively a higher-order process, but also takes place in primary sensory cortices. Such early multisensory interaction is thought to be mediated by means of phase resetting. The presentation of a stimulus to one sensory modality resets the phase of ongoing oscillations in another modality such that processing in the latter modality is modulated. In humans, evidence for such a mechanism is still sparse. In the current study, the influence of an auditory stimulus on visual processing was investigated by measuring the electroencephalogram (EEG) and behavioral responses of humans to visual, auditory, and audiovisual stimulation with varying stimulus-onset asynchrony (SOA). We observed three distinct oscillatory EEG responses in our data. An initial gamma-band response around 50 Hz was followed by a beta-band response around 25 Hz, and a theta response around 6 Hz. The latter was enhanced in response to cross-modal stimuli as compared to either unimodal stimuli. Interestingly, the beta response to unimodal auditory stimuli was dominant in electrodes over visual areas. The SOA between auditory and visual stimuli--albeit not consciously perceived--had a modulatory impact on the multisensory evoked beta-band responses; i.e., the amplitude depended on SOA in a sinusoidal fashion, suggesting a phase reset. These findings further support the notion that parameters of brain oscillations such as amplitude and phase are essential predictors of subsequent brain responses and might be one of the mechanisms underlying multisensory integration.

PMID:
21613485
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk