Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011;6(5):e19534. doi: 10.1371/journal.pone.0019534. Epub 2011 May 17.

Comparison of sequence reads obtained from three next-generation sequencing platforms.

Author information

  • 1Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Suita, Osaka, Japan.

Abstract

Next-generation sequencing technologies enable the rapid cost-effective production of sequence data. To evaluate the performance of these sequencing technologies, investigation of the quality of sequence reads obtained from these methods is important. In this study, we analyzed the quality of sequence reads and SNP detection performance using three commercially available next-generation sequencers, i.e., Roche Genome Sequencer FLX System (FLX), Illumina Genome Analyzer (GA), and Applied Biosystems SOLiD system (SOLiD). A common genomic DNA sample obtained from Escherichia coli strain DH1 was applied to these sequencers. The obtained sequence reads were aligned to the complete genome sequence of E. coli DH1, to evaluate the accuracy and sequence bias of these sequence methods. We found that the fraction of "junk" data, which could not be aligned to the reference genome, was largest in the data set of SOLiD, in which about half of reads could not be aligned. Among data sets after alignment to the reference, sequence accuracy was poorest in GA data sets, suggesting relatively low fidelity of the elongation reaction in the GA method. Furthermore, by aligning the sequence reads to the E. coli strain W3110, we screened sequence differences between two E. coli strains using data sets of three different next-generation platforms. The results revealed that the detected sequence differences were similar among these three methods, while the sequence coverage required for the detection was significantly small in the FLX data set. These results provided valuable information on the quality of short sequence reads and the performance of SNP detection in three next-generation sequencing platforms.

PMID:
21611185
[PubMed - indexed for MEDLINE]
PMCID:
PMC3096631
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk