Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Syst Biol. 2011 May 23;5:82. doi: 10.1186/1752-0509-5-82.

Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization.

Author information

  • 1Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

BACKGROUND:

BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Unfortunately, the signaling pathways regulated by BMP6 are largely uncharacterized due to both a lack of data and the complexity of the response.

RESULTS:

To better characterize the signaling pathways responsive to BMP6, we conducted a time series microarray study to track BMP6 induced osteoblast differentiation and mineralization. These temporal data were analyzed using a customized gene set analysis approach to identify temporally coherent sets of genes that act downstream of BMP6. Our analysis identified BMP6 regulation of previously reported pathways, such as the TGF-beta pathway. We also identified previously unknown connections between BMP6 and pathways such as Notch signaling and the MYB and BAF57 regulatory modules. In addition, we identify a super-network of pathways that are sequentially activated following BMP6 induction.

CONCLUSION:

In this work, we carried out a microarray-based temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization using GAGE method. This novel temporal analysis is more informative and powerful than the classical static pathway analysis in that: (1) it captures the interconnections between signaling pathways or functional modules and demonstrates the even higher level organization of molecular biological systems; (2) it describes the temporal perturbation patterns of each pathway or module and their dynamic roles in osteoblast differentiation. The same set of experimental and computational strategies employed in our work could be useful for studying other complex biological processes.

© 2011 Luo et al; licensee BioMed Central Ltd.

PMID:
21605425
[PubMed - indexed for MEDLINE]
PMCID:
PMC3126716
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk