Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Immunobiology. 2011 Sep;216(9):1010-7. doi: 10.1016/j.imbio.2011.04.001. Epub 2011 Apr 13.

Interaction between oxidative stress and chemokines: possible pathogenic role in systemic lupus erythematosus and rheumatoid arthritis.

Author information

  • 1Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh 160014, India.

Abstract

Imbalance oxidative stress and chemokines are considered as a universal factors involved in the development of various clinical features seen in the patients with SLE and arthritis. To evaluate the interaction between oxidative stress and chemokines and their relationship with disease activity in SLE and RA patients, oxidative/anti-oxidant profiles and chemokines were assessed. Oxidant and anti-oxidant enzymes were measured in the plasma and the levels of chemokines; MCP-1/CCL2, RANTES/CCL5, MIP-1β/CCL-4 and IP-10/CXCL-10 were evaluated in the serum by an enzyme-linked immunosorbent assay (ELISA). A significant increase in the level of lipid peroxidation was found in SLE and RA patients and positively associated with disease activity. The activities of anti-oxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and anti-oxidant molecule GSH were significantly reduced in both diseases. Strong positive associations were found between MDA with RANTES/CCL5 and MIP-1β/CCL4 than MCP-1/CCL-2 in SLE patients while a sturdy connotation was seen with MIP-1β/CCL4 and MCP-1/CCL-2 in RA patients. The anti-oxidant molecule GSH shows a negative association with serum levels of MCP-1/CCL-2, RANTES/CCL5 and IP-10/CXCL-10 in SLE patients and with MCP-1/CCL-2 and RANTES/CCL5 in RA patients. A low level of GSH and high level of RANTES/CCL5 were associated with lupus nephritis patients. These results indicates that excessive production of ROS disturbs redox status and can modulate the expression of inflammatory chemokines leading to inflammatory processes, exacerbating inflammation and affecting tissue damage in autoimmune diseases, as exemplified by their strong association with disease activity.

Copyright © 2011 Elsevier GmbH. All rights reserved.

PMID:
21601309
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk