Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2011 Sep 29;192:295-303. doi: 10.1016/j.neuroscience.2011.05.006. Epub 2011 May 12.

Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices.

Author information

  • 1Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.

Abstract

Spreading depression (SD) is a wave of coordinated cellular depolarization that propagates slowly throughout brain tissue. SD has been associated with migraine aura, and related events have been implicated in the enlargement of some brain injuries. Selective disruption of astrocyte oxidative metabolism has previously been shown to increase the propagation rate of SD in vivo, but it is currently unknown whether astrocyte glycogen stores make significant contributions to the onset or propagation of SD. We examined SD in acutely-prepared murine hippocampal slices, using either localized microinjections of KCl or oxygen and glucose deprivation (OGD) as stimuli. A combination of glycogenolysis inhibitors 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) and 1-deoxynojirimycin (DNJ) increased the propagation rates of both high K(+)-SD and OGD-SD. Consistent with these observations, exposure to l-methionine-dl-sulfoximine (MSO) increased slice glycogen levels and decreased OGD-SD propagation rates. Effects of glycogen depletion were matched by selective inhibition of astrocyte tricarboxylic acid (TCA) cycle activity by fluoroacetate (FA). Prolonged exposure to reduced extracellular glucose (2 mM) has been suggested to deplete slice glycogen stores, but significant modification SD of propagation rate was not observed with this treatment. Furthermore, decreases in OGD-SD latency with this preexposure paradigm appeared to be due to depletion of glucose, rather than glycogen availability. These results suggest that astrocyte glycogen stores contribute to delaying the advancing wavefront of SD, including during the severe metabolic challenge of OGD. Approaches to enhance astrocyte glycogen reserves could be beneficial for delaying or preventing SD in some pathologic conditions.

Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

PMID:
21600270
[PubMed - indexed for MEDLINE]
PMCID:
PMC3233357
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk