Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1990 Apr 30;189(2):295-300.

Characterization and activation of procollagenase from human polymorphonuclear leucocytes. N-terminal sequence determination of the proenzyme and various proteolytically activated forms.

Author information

  • 1Department of Biochemistry, Faculty of Chemistry, University of Bielefeld, Federal Republic of Germany.


Procollagenase of human polymorphonuclear leucocytes was purified to homogeneity using a rapid and reproducible method. The purification procedure included affinity chromatography on zinc chelate Sepharose, ion exchange chromatography on Q-Sepharose fast flow, followed by affinity chromatography on orange Sepharose and finally a gel-permeation step on Sephacryl S-300. It was shown by SDS/PAGE, under reducing conditions, that the latent collagenase of human polymorphonuclear leucocytes consists of a single polypeptide chain with an apparent relative molecular mass of 85,000. Upon deglycosylation by endoglycosidase F digestion, the apparent relative molecular mass of the procollagenase was reduced to 53,000 which is similar to that of the fibroblast enzyme, and indicates a close relationship between both enzymes. Sequence data were determined by direct automated Edman degradation of the purified polymorphonuclear leucocyte procollagenase. The complete sequence of the propeptide region (residue 1-120) was thereby established. The proteolytic activation of the polymorphonuclear leucocyte procollagenase by various enzymes was investigated by determining the N-terminal sequences of the intermediate and final activated forms. Activation by chymotrypsin and cathepsin G led to the active form (Mr 64,000) by cleaving 79 N-terminal residues from the proenzyme. Trypsin activates in a two-step process. Cleavage of 48 N-terminal residues led to a still latent Mr 70,000 species. The final active form (Mr 65,000) was obtained by splitting off 20 additional N-terminal residues.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk