Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1990 Apr 30;189(2):295-300.

Characterization and activation of procollagenase from human polymorphonuclear leucocytes. N-terminal sequence determination of the proenzyme and various proteolytically activated forms.

Author information

  • 1Department of Biochemistry, Faculty of Chemistry, University of Bielefeld, Federal Republic of Germany.

Abstract

Procollagenase of human polymorphonuclear leucocytes was purified to homogeneity using a rapid and reproducible method. The purification procedure included affinity chromatography on zinc chelate Sepharose, ion exchange chromatography on Q-Sepharose fast flow, followed by affinity chromatography on orange Sepharose and finally a gel-permeation step on Sephacryl S-300. It was shown by SDS/PAGE, under reducing conditions, that the latent collagenase of human polymorphonuclear leucocytes consists of a single polypeptide chain with an apparent relative molecular mass of 85,000. Upon deglycosylation by endoglycosidase F digestion, the apparent relative molecular mass of the procollagenase was reduced to 53,000 which is similar to that of the fibroblast enzyme, and indicates a close relationship between both enzymes. Sequence data were determined by direct automated Edman degradation of the purified polymorphonuclear leucocyte procollagenase. The complete sequence of the propeptide region (residue 1-120) was thereby established. The proteolytic activation of the polymorphonuclear leucocyte procollagenase by various enzymes was investigated by determining the N-terminal sequences of the intermediate and final activated forms. Activation by chymotrypsin and cathepsin G led to the active form (Mr 64,000) by cleaving 79 N-terminal residues from the proenzyme. Trypsin activates in a two-step process. Cleavage of 48 N-terminal residues led to a still latent Mr 70,000 species. The final active form (Mr 65,000) was obtained by splitting off 20 additional N-terminal residues.

PMID:
2159879
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk