Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011 May 11;6(5):e19878. doi: 10.1371/journal.pone.0019878.

Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

Author information

  • 1Department of Medicine, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America.



The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.


To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL) were assessed by DXA, MRI and (1)H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05), while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005) while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005). IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2)O peak, P<0.05), who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.


This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired insulin signaling in this population.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk