Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cheminform. 2011 May 16;3(1):17. doi: 10.1186/1758-2946-3-17.

ChemicalTagger: A tool for semantic text-mining in chemistry.

Author information

  • 1Unilever Centre for Molecular Science Informatics, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK. lh359@cam.ac.uk.

Abstract

BACKGROUND:

The primary method for scientific communication is in the form of published scientific articles and theses which use natural language combined with domain-specific terminology. As such, they contain free owing unstructured text. Given the usefulness of data extraction from unstructured literature, we aim to show how this can be achieved for the discipline of chemistry. The highly formulaic style of writing most chemists adopt make their contributions well suited to high-throughput Natural Language Processing (NLP) approaches.

RESULTS:

We have developed the ChemicalTagger parser as a medium-depth, phrase-based semantic NLP tool for the language of chemical experiments. Tagging is based on a modular architecture and uses a combination of OSCAR, domain-specific regex and English taggers to identify parts-of-speech. The ANTLR grammar is used to structure this into tree-based phrases. Using a metric that allows for overlapping annotations, we achieved machine-annotator agreements of 88.9% for phrase recognition and 91.9% for phrase-type identification (Action names).

CONCLUSIONS:

It is possible parse to chemical experimental text using rule-based techniques in conjunction with a formal grammar parser. ChemicalTagger has been deployed for over 10,000 patents and has identified solvents from their linguistic context with >99.5% precision.

PMID:
21575201
[PubMed]
PMCID:
PMC3117806
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk