Display Settings:

Format

Send to:

Choose Destination
Mol Cancer Ther. 2011 Jul;10(7):1185-93. doi: 10.1158/1535-7163.MCT-11-0061. Epub 2011 May 13.

Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation.

Author information

  • 1Ludwig Center for Metastasis Research, The University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA.

Abstract

Radiation therapy remains a promising modality for curative treatment of localized prostate cancer, but dose-limiting toxicities significantly limit its effectiveness. Agents that enhance efficacy at lower radiation doses might have considerable value in increasing tumor control without compromising organ function. Here, we tested the hypothesis that the PARP inhibitor ABT-888 (veliparib) can enhance the response of prostate cancer cells and tumors to ionizing radiation (IR). Following exposure of DU-145 and PC-3 prostate cancer cell lines to the combination of 10 μmol/L ABT-888 and 6 Gy, we observed similar persistence between both cell lines of DNA damage foci and in vitro radiosensitization. We have previously observed that persistent DNA damage foci formed after ABT-888 plus IR efficiently promote accelerated cell senescence, but only PC-3 cells displayed the expected senescent response of G(2)-M arrest, induction of p21 and β-galactosidase expression, and accumulation as large flat cells. In turn, combining ABT-888 with 6 Gy resulted in delayed tumor regrowth compared with either agent alone only in PC-3 xenograft tumors, whereas DU-145 tumors continued to grow. By 7 days after treatment with ABT-888 plus IR, PC-3 tumors contained abundant senescent cells displaying persistent DNA damage foci, but no evidence of senescence was noted in the DU-145 tumors. That equivalent radiosensitization by ABT-888 plus IR in vitro failed to predict comparable results with tumors in vivo suggests that the efficacy of PARP inhibitors may partially depend on a competent senescence response to accumulated DNA damage.

© 2011 American Association for Cancer Research.

PMID:
21571912
[PubMed - indexed for MEDLINE]
PMCID:
PMC3140695
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk