Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8617-22. doi: 10.1073/pnas.1015741108. Epub 2011 May 9.

Versatile RNA-sensing transcriptional regulators for engineering genetic networks.

Author information

  • 1Department of Bioengineering, University of California, Berkeley, CA 94720, USA.

Abstract

The widespread natural ability of RNA to sense small molecules and regulate genes has become an important tool for synthetic biology in applications as diverse as environmental sensing and metabolic engineering. Previous work in RNA synthetic biology has engineered RNA mechanisms that independently regulate multiple targets and integrate regulatory signals. However, intracellular regulatory networks built with these systems have required proteins to propagate regulatory signals. In this work, we remove this requirement and expand the RNA synthetic biology toolkit by engineering three unique features of the plasmid pT181 antisense-RNA-mediated transcription attenuation mechanism. First, because the antisense RNA mechanism relies on RNA-RNA interactions, we show how the specificity of the natural system can be engineered to create variants that independently regulate multiple targets in the same cell. Second, because the pT181 mechanism controls transcription, we show how independently acting variants can be configured in tandem to integrate regulatory signals and perform genetic logic. Finally, because both the input and output of the attenuator is RNA, we show how these variants can be configured to directly propagate RNA regulatory signals by constructing an RNA-meditated transcriptional cascade. The combination of these three features within a single RNA-based regulatory mechanism has the potential to simplify the design and construction of genetic networks by directly propagating signals as RNA molecules.

PMID:
21555549
[PubMed - indexed for MEDLINE]
PMCID:
PMC3102349
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk