Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa

Environ Microbiol. 2011 Jul;13(7):1666-81. doi: 10.1111/j.1462-2920.2011.02495.x. Epub 2011 May 9.

Abstract

Biofilm formation in P. aeruginosa is a highly regulated process that proceeds through a number of distinct stages. This development is controlled by a wide range of factors, of which two-component systems (TCSs) play a key role. In this review, we focus on some of the TCSs that regulate the switch from a motile to a sessile bacterial lifestyle, either via the production of extracellular appendages or by the production of exopolysaccharides. Extracellular appendages, such as flagella, type IV pili and Cup fimbriae are often involved in the initial attachment of bacteria to a surface. In P. aeruginosa, many of these surface structures are regulated by TCSs, and some systems regulate more than one type of appendage. Furthermore, the production of exopolysaccharides, such as Pel and Psl, is required for P. aeruginosa biofilm formation. The regulation of Pel and Psl is post-transcriptionally repressed by RsmA, the activity of which is controlled by a complex regulatory system involving several sensor kinases and accessory components. Furthermore, the Rsm system is a major control system that inversely regulates factors involved in motility and acute infection on one hand, and factors involved in biofilm formation and chronic infection on the other hand. Finally, a series of TCSs has recently been discovered that regulates biofilm development in a stage-specific manner. Taken together, these complex regulatory networks allow the bacterium to respond appropriately to diverse environmental stimuli, and increased knowledge of their mechanisms and signals could be of great importance in the design of novel antibacterial strategies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacterial Adhesion
  • Biofilms / growth & development*
  • Fimbriae, Bacterial / physiology
  • Flagella / physiology
  • Gene Expression Regulation, Bacterial
  • Gene Regulatory Networks*
  • Humans
  • Pseudomonas aeruginosa / growth & development
  • Pseudomonas aeruginosa / physiology*
  • Signal Transduction*