Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2011 Aug;32(22):5148-57. doi: 10.1016/j.biomaterials.2011.03.071. Epub 2011 May 4.

Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles.

Author information

  • 1National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.

Abstract

Understanding the processes involved in the cellular uptake of nanoparticles is critical for developing effective nano drug delivery systems. In this paper we found that PEG-b-PLA polymeric micelles firstly interacted with cell membrane using atomic force microscopy (AFM) and then released their core-loaded agents into the cell membrane by fluorescence resonance energy transfer (FRET). The released agents were internalized into the cells via lipid raft/caveolae-mediated endocytosis using total internal reflection fluorescence microscopy (TIRFM) and endocytic inhibitors. Further studies revealed that paclitaxel (PTX)-loaded PEG-b-PLA micelles (M-PTX) increased the cellular accumulation of PTX in PTX-resistant human ovarian cell line A2780/T which resulted in more apoptosis as measured by flow cytometry and the cleavage of poly (ADP-ribose) polymerase (PARP) compared with free PTX. PEG-b-PLA micelles inhibited P-glycoprotein (Pgp) function and Pgp ATPase activity but had no effect on Pgp protein expression. The membrane microenvironment studies showed that PEG-b-PLA micelles induced cell membrane depolarization and enhanced membrane microviscosity. These results suggested that PEG-b-PLA micelles might inhibit Pgp function to reverse multidrug resistance (MDR) via interaction with cell membrane to affect the membrane microenvironment. This study provides a foundation for understanding the mechanism of reversing MDR by nanoparticles better and designing more effective nano drug carriers.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21546083
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk