Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharm. 2011 Aug 1;8(4):1198-208. doi: 10.1021/mp200025m. Epub 2011 May 24.

64Cu-labeled lissamine rhodamine B: a promising PET radiotracer targeting tumor mitochondria.

Author information

  • 1School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

Abstract

Enhanced mitochondrial potential in carcinoma cells is an important characteristic of cancer. It is of great current interest to develop a radiotracer that is sensitive to mitochondrial potential changes at the early stage of tumor growth. In this report, we present the synthesis and evaluation of (64)Cu-labeled Lissamine rhodamine B (LRB), (64)Cu(DOTA-LRB) (DOTA-LRB = 2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecan-1-yl)acetamido)ethyl)sulfamoyl)benzenesulfonate) as a new radiotracer for imaging tumors in athymic nude mice bearing U87MG human glioma xenografts by positron emission tomography (PET). We also explored its localization mechanism using Cu(DOTA-LRB) as the fluorescent probe in both the U87MG human glioma cell line and the cultured primary U87MG glioma cells. It was found that (64)Cu(DOTA-LRB) had the highest tumor uptake (6.54 ± 1.50, 6.91 ± 1.26, 5.68 ± 1.13, 7.58 ± 1.96, and 5.14 ± 1.50%ID/g at 0.5, 1, 2, 4, and 24 h postinjection, respectively) among many (64)Cu-labeled organic cations evaluated in the same animal model. The cellular staining study indicated that Cu(DOTA-LRB) was able to localize in mitochondria of U87MG glioma cells due to the enhanced negative mitochondrial potential. This statement is completely supported by the results from decoupling experiment with carbonylcyanide-m-chlorophenylhydrazone (CCCP). MicroPET data showed that the U87MG glioma tumors were clearly visualized as early as 30 min postinjection with (64)Cu(DOTA-LRB). (64)Cu(DOTA-LRB) remained stable during renal excretion, but underwent extensive degradation during hepatobiliary excretion. On the basis of the results from this study, it was concluded that (64)Cu(DOTA-LRB) represents a new class of promising PET radiotracers for noninvasive imaging of the MDR-negative tumors.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk