Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2011 Oct;30(10):1760-70. doi: 10.1109/TMI.2011.2147327. Epub 2011 Apr 29.

Topology-based kernels with application to inference problems in Alzheimer's disease.

Author information

  • 1Alzheimer’s Disease Neuroimaging Initiative and Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA. pachauri@cs.wisc.edu

Abstract

Alzheimer's disease (AD) research has recently witnessed a great deal of activity focused on developing new statistical learning tools for automated inference using imaging data. The workhorse for many of these techniques is the support vector machine (SVM) framework (or more generally kernel-based methods). Most of these require, as a first step, specification of a kernel matrix K between input examples (i.e., images). The inner product between images I(i) and I(j) in a feature space can generally be written in closed form and so it is convenient to treat K as "given." However, in certain neuroimaging applications such an assumption becomes problematic. As an example, it is rather challenging to provide a scalar measure of similarity between two instances of highly attributed data such as cortical thickness measures on cortical surfaces. Note that cortical thickness is known to be discriminative for neurological disorders, so leveraging such information in an inference framework, especially within a multi-modal method, is potentially advantageous. But despite being clinically meaningful, relatively few works have successfully exploited this measure for classification or regression. Motivated by these applications, our paper presents novel techniques to compute similarity matrices for such topologically-based attributed data. Our ideas leverage recent developments to characterize signals (e.g., cortical thickness) motivated by the persistence of their topological features, leading to a scheme for simple constructions of kernel matrices. As a proof of principle, on a dataset of 356 subjects from the Alzheimer's Disease Neuroimaging Initiative study, we report good performance on several statistical inference tasks without any feature selection, dimensionality reduction, or parameter tuning.

PMID:
21536520
[PubMed - indexed for MEDLINE]
PMCID:
PMC3245735
Free PMC Article

Images from this publication.See all images (15)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Publication Types, MeSH Terms, Grant Support

Publication Types

MeSH Terms

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk