Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2011 Apr 27;31(17):6421-31. doi: 10.1523/JNEUROSCI.4744-10.2011.

Protein kinase M maintains long-term sensitization and long-term facilitation in aplysia.

Author information

  • 1Department of Integrative Biology and Physiology, University of California, Los Angeles, College, Los Angeles, California 90095-1606, USA.

Abstract

How the brain maintains long-term memories is one of the major outstanding questions in modern neuroscience. Evidence from mammalian studies indicates that activity of a protein kinase C (PKC) isoform, protein kinase Mζ (PKMζ), plays a critical role in the maintenance of long-term memory. But the range of memories whose persistence depends on PKMζ, and the mechanisms that underlie the effect of PKMζ on long-term memory, remain obscure. Recently, a PKM isoform, known as PKM Apl III, was cloned from the nervous system of Aplysia. Here, we tested whether PKM Apl III plays a critical role in long-term memory maintenance in Aplysia. Intrahemocoel injections of the pseudosubstrate inhibitory peptide ZIP (ζ inhibitory peptide) or the PKC inhibitor chelerythrine erased the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex (SWR) as late as 7 d after training. In addition, both PKM inhibitors disrupted the maintenance of long-term (≥ 24 h) facilitation (LTF) of the sensorimotor synapse, a form of synaptic plasticity previously shown to mediate LTS of the SWR. Together with previous results (Bougie et al., 2009), our results support the idea that long-term memory in Aplysia is maintained via a positive-feedback loop involving PKM Apl III-dependent protein phosphorylation. The present data extend the known role of PKM in memory maintenance to a simple and well studied type of long-term learning. Furthermore, the demonstration that PKM activity underlies the persistence of LTF of the Aplysia sensorimotor synapse, a form of synaptic plasticity amenable to rigorous cellular and molecular analyses, should facilitate efforts to understand how PKM activity maintains memory.

PMID:
21525283
[PubMed - indexed for MEDLINE]
PMCID:
PMC3102530
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk