Display Settings:

Format

Send to:

Choose Destination
Cytometry A. 2011 Jun;79(6):461-9. doi: 10.1002/cyto.a.21068. Epub 2011 Apr 25.

Quantifying nuclear p65 as a parameter for NF-κB activation: Correlation between ImageStream cytometry, microscopy, and Western blot.

Author information

  • 1Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA. orla.maguire@roswellpark.org

Abstract

The nuclear factor kappa B (NF-κB) pathway, which regulates many cellular processes including proliferation, apoptosis, and survival, has emerged as an important therapeutic target in cancer. Activation of the NF-κB transcription factor is associated with nuclear translocation of the p65 component of the complex. Conventional methods employed to determine nuclear translocation of NF-κB either lack statistical robustness (microscopy) or the ability to discern heterogeneity within the sampled populations (Western blotting and Gel Shift assays). The ImageStream platform combines the high image content information of microscopy with the high throughput and multiparameter analysis of flow cytometry which overcomes the aforementioned limitations of conventional assays. It is demonstrated that ImageStream assessment of receptor-mediated (TNFα) and drug (Daunorubicin, DNR)-induced NF-κB translocation in leukemic cell lines correlates well with microscopy analysis and Western blot analysis. It is further demonstrated that ImageStream cytometry enables quantitative assessment of p65 translocation in immunophenotypically defined subpopulations; and that this assessment is highly reproducible. It is also demonstrated that, quantitatively, the DNR-induced nuclear translocation of NF-κB correlates well with a biological response (apoptosis). We conclude that the ImageStream has the potential to be a powerful tool to evaluate NF-κB /p65 activity as a determinant of response to therapies designed to target aberrant NF-κB signaling activities.

Copyright © 2011 International Society for Advancement of Cytometry.

PMID:
21520400
[PubMed - indexed for MEDLINE]
PMCID:
PMC3140714
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk