Format

Send to:

Choose Destination
See comment in PubMed Commons below
Phys Chem Chem Phys. 2011 Jun 7;13(21):10076-83. doi: 10.1039/c1cp20543a. Epub 2011 Apr 21.

Large size, high efficiency fiber-shaped dye-sensitized solar cells.

Author information

  • 1Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Abstract

A high-efficiency dye-sensitized solar cell prototype has been designed and fabricated, in which the working electrode and counter electrode are in direct contact and singly twisted. The cell is sealed in a capillary. In this solar cell configuration, the area ratio between the counter and working electrode is extremely low which allows the independent adjustment of electrolyte volume and the distance between counter electrode and photo-anode. Also it is more easily sealed compared to planar solar cell. The effects of TiO(2) film thickness, twisted pitch of counter electrode and length of device have been investigated. Our results indicate that this novel configuration has demonstrated excellent modularization function, three dimensional light harvesting capacities and the relative independence of incident light angles due to the symmetry structure. The power conversion efficiency of one cell of 9.5 cm in length can reach up to 5.41% at standard test condition (100 mW cm(-2)) and the power output may double under intense diffuse illumination. As far as we know, this is the longest and most efficient fiber-shaped dye-sensitized solar cell consisting of liquid electrolyte. The longer the fiber-shaped solar cell is, the more suitable it is for woven solar power textile if it is encapsulated in transparent flexible plastic capillary.

PMID:
21509400
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk