Static and dynamic snapshots for goal localization in insects?

Commun Integr Biol. 2011 Jan;4(1):17-20. doi: 10.4161/cib.4.1.13763.

Abstract

Bees, wasps and ants navigate successfully between feeding sites and their nest, despite the small size of their brains which contain less than a million neurons. A long history of studies examining the role of visual memories in homing behavior show that insects can localize a goal by finding a close match between a memorized view at the goal location and their current view ("snapshot matching"). However, the concept of static snapshot matching might not explain all aspects of homing behavior, as honeybees are able to use landmarks that are statically camouflaged. In this case the landmarks are only detectable by relative motion cues between the landmark and the background, which the bees generate when they perform characteristic flight maneuvers close to the landmarks. The bees' navigation performance can be explained by a matching scheme based on optic flow amplitudes ("dynamic snapshot matching"). In this article, I will discuss the concept of dynamic snapshot matching in the light of previous literature.

Keywords: insect navigation; snapshot matching; view-based homing; vision.