Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2011 Jul;301(1):C213-26. doi: 10.1152/ajpcell.00067.2011. Epub 2011 Apr 20.

mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON.

Author information

  • 1Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.

Abstract

The mammalian target of rapamycin (mTOR) signaling exists in two complexes: mTORC1 and mTORC2. Neurotensin (NT), an intestinal hormone secreted by enteroendocrine (N) cells in the small bowel, has important physiological effects in the gastrointestinal tract. The human endocrine cell line BON abundantly expresses the NT gene and synthesizes and secretes NT in a manner analogous to that of N cells. Here, we demonstrate that the inhibition of mTORC1 by rapamycin (mTORC1 inhibitor), torin1 (both mTORC1 and mTORC2 inhibitor) or short hairpin RNA-mediated knockdown of mTOR, regulatory associated protein of mTOR (RAPTOR), and p70 S6 kinase (p70S6K) increased basal NT release via upregulating NT gene expression in BON cells. c-Jun activity was increased by rapamycin or torin1 or p70S6K knockdown. c-Jun overexpression dramatically increased NT promoter activity, which was blocked by PD98059, an mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, overexpression of MEK1 or extracellular signal-regulated kinase 1 (ERK1) increased c-Jun expression and NT promoter activity. More importantly, PD98059 blocked rapamycin- or torin1-enhanced NT secretion. Consistently, rapamycin and torin1 also increased NT gene expression in Hep3B cells, a human hepatoma cell line that, similar to BON, expresses high levels of NT. Phosphorylation of c-Jun and ERK1/2 was also increased by rapamycin and torin1 in Hep3B cells. Finally, we showed activation of mTOR in BON cells treated with amino acids, high glucose, or serum and, concurrently, the attenuation of ERK1/2 and c-Jun phosphorylation and NT secretion. Together, mTORC1, as a nutrient sensor, negatively regulates NT secretion via the MEK/ERK/c-Jun signaling pathway. Our results identify a physiological link between mTORC1 and MEK/ERK signaling in controlling intestinal hormone gene expression and secretion.

PMID:
21508335
[PubMed - indexed for MEDLINE]
PMCID:
PMC3129828
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk