Send to:

Choose Destination
See comment in PubMed Commons below
Echocardiography. 2011 Apr;28(4):416-30. doi: 10.1111/j.1540-8175.2010.01359.x.

Impaired biventricular deformation in Marfan syndrome: a strain and strain rate study in adult unoperated patients.

Author information

  • 1Department of Cardiac and Vascular Sciences, St George's University of London, London, UK.



To investigate the presence of any regional myocardial deformation abnormalities in Marfan syndrome (MFS) and determine the benefits of using advanced echocardiography compared to conventional techniques.


Myocardial dysfunction in MFS may be caused by extracellular matrix remodeling thus, resulting in uniform reduced functionality. However, increased aortic stiffness may cause segmental ventricular abnormalities. Strain rate imaging (SRI) constitutes a validated technique to assess regional deformation in various clinical conditions. With this in mind, we aimed to investigate biventricular function in MFS using SRI.


Forty-four MFS patients (mean age 30 ± 12 years, 26 men) and 49 controls without valvular disease were examined using SRI. Ejection fraction (EF) was calculated by the Simpson's biplane method. Biventricular deformation was assessed by measuring strain/strain rate. Strain values were divided by left ventricular (LV) end-diastolic volume to adjust LV deformation for geometry changes providing a strain index (SI). Aortic stiffness was evaluated using the β-stiffness index.


EF (%) was reduced in MFS patients (59 ± 5 vs 72 ± 4, P < 0.001), whereas β-stiffness was increased (P < 0.001). LV radial and LV and right ventricular (RV) long-axis strain values (%) were reduced in the patient group (70 ± 17 vs 93 ± 10; 19 ± 2 vs 25 ± 2; 30 ± 9 vs 36 ± 8, respectively, P < 0.001). Strain rate measurements were also reduced (P < 0.001). In a multiple regression analysis, MFS diagnosis was negatively associated with LV SI (-0.262 [-0.306, -0.219], P < 0.001). β-Stiffness was negatively associated with SI obtained from the septum, inferior and anterior walls. ROC analyses demonstrated that SRI, when compared with conventional echocardiography, had higher sensitivity and specificity in predicting biventricular dysfunction in MFS.


Our study showed a uniform reduction in biventricular deformation in MFS. These findings suggest that assessment of myocardial function using advanced echocardiographic techniques could be more accurate in MFS patient evaluation than conventional echocardiography alone.

© 2011, Wiley Periodicals, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk