Display Settings:

Format

Send to:

Choose Destination
Plant J. 2011 Aug;67(3):513-25. doi: 10.1111/j.1365-313X.2011.04611.x. Epub 2011 May 31.

Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to ¹³C metabolic flux analysis.

Author information

  • 1Biology Department, Brookhaven National Laboratory, Bldg. 463, Upton, NY 11973, USA. jhay@bnl.gov

Abstract

Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large-scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior ¹³C metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH₄⁺ assimilation. Analysis of the light-dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO₂ efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the ¹³C flux studies, ribulose-1,5-bisphosphate carboxylase activity is predicted to account fully for the light-dependent changes in carbon balance.

© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

PMID:
21501261
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk