Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Genet Dev. 2011 Aug;21(4):444-51. doi: 10.1016/j.gde.2011.03.002. Epub 2011 Apr 13.

Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1.

Author information

  • 1Department of Microbiology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA.

Abstract

The GU-rich element (GRE) was identified as a conserved sequence enriched in the 3' UTR of human transcripts that exhibited rapid mRNA turnover. In mammalian cells, binding to GREs by the protein CELF1 coordinates mRNA decay of networks of transcripts involved in cell growth, migration, and apoptosis. Depending on the context, GREs and CELF1 also regulate pre-mRNA splicing and translation. GREs are highly conserved throughout evolution and play important roles in the development of organisms ranging from worms to man. In humans, abnormal GRE-mediated regulation contributes to disease states and cancer. Thus, GREs and CELF proteins serve critical functions in gene expression regulation and define an important evolutionarily conserved posttranscriptional regulatory network.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21497082
[PubMed - indexed for MEDLINE]
PMCID:
PMC3146975
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk