Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Inorg Chem. 2011 Jun;16(5):777-87. doi: 10.1007/s00775-011-0779-6. Epub 2011 Apr 13.

Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA).

Author information

  • 1School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia.

Abstract

The organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA) is a highly efficient catalyst for the degradation of pesticides and some nerve agents such as sarin. OpdA requires two metal ions for catalytic activity, and hydrolysis is initiated by a nucleophilic hydroxide that is bound to one of these metal ions. The precise location of this nucleophile has been contentious, with both a terminal and a metal-ion-bridging hydroxide as likely candidates. Here, we employed magnetic circular dichroism to probe the electronic and geometric structures of the Co(II)-reconstituted dinuclear metal center in OpdA. In the resting state the metal ion in the more secluded α site is five-coordinate, whereas the Co(II) in the solvent-exposed β site is predominantly six-coordinate with two terminal water ligands. Addition of the slow substrate diethyl 4-methoxyphenyl phosphate does not affect the α site greatly but lowers the coordination number of the β site to five. A reduction in the exchange coupling constant indicates that substrate binding also triggers a shift of the μ-hydroxide into a pseudoterminal position in the coordination sphere of either the α or the β metal ion. Mechanistic implications of these observations are discussed.

PMID:
21487938
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk