Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2011 Jul;32(21):4976-86. doi: 10.1016/j.biomaterials.2011.03.050. Epub 2011 Apr 12.

Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy.

Author information

  • 1Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.

Abstract

Promising drug nanocarriers consisting of mono-dispersed and pH sensitive chitosan-silica hollow nanospheres (CS-SiO(2) HNPs) suitable for breast cancer therapy are produced and investigated. The SiO(2) HNPs are fabricated using a one-step, one-medium process which obviates the need for post-treatment to remove the templates, additional dissolution, or calcination. Taking advantage of the cross-linking reaction with (3-Glycidyloxypropyl) trimethoxysilane (GTPMS), cationic polysaccharide-chitosan decorates the surface and produces pH sensitive CS-SiO(2) HNPs. The materials enable controlled release of loaded drugs in pericellular and interstitial environments. In particular, the antibody molecule (to ErbB 2) can be conjugated onto the surface of the CS-SiO(2) HNPs thereby allowing the hollow nanospheres to serve as a targeted delivery agent to breast cancer cells. TNF-α are delivered to MCF-7 breast cancer cells under both in vitro and in vivo conditions to suppress the growth of cancerous cells and even kill them with high therapeutic efficacy. Owing to their hollow inner cavity and porous structures, the CS-SiO(2) HNPs are excellent pH-responsive targeted nanocarriers.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21486679
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk