Display Settings:


Send to:

Choose Destination
Nanotechnology. 2011 Jun 10;22(23):235702. doi: 10.1088/0957-4484/22/23/235702. Epub 2011 Apr 11.

One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques.

Author information

  • 1Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia. avinash.baji@sydney.edu.au


We report the fabrication of novel multiferroic nanostructured bismuth ferrite (BiFeO(3)) fibers using the sol-gel based electrospinning technique. Phase pure BiFeO(3) fibers were prepared by thermally annealing the electrospun BiFeO(3)/polyvinylpyrrolidone composite fibers in air for 1 h at 600 °C. The x-ray diffraction pattern of the fibers (BiFeO(3)) obtained showed that their crystalline structures were rhombohedral perovskite structures. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the BiFeO(3) fibers were composed of fine grained microstructures. The grains were self-assembled and self-organized to yield dense and continuous fibrous structures. The magnetic hysteresis loops of these nanostructured fibers displayed the expected ferromagnetic behavior, whereby a coercivity of ∼ 250 Oe and a saturation magnetization of ∼ 1.34 emu g(-1) were obtained. The ferroelectricity and ferroelectric domain structures of the fibers were confirmed using piezoresponse force microscopy (PFM). The piezoelectric hysteresis loops and polar domain switching behavior of the fibers were examined. Such multiferroic fibers are significant for electroactive applications and nano-scale devices.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk