Format

Send to

Choose Destination
See comment in PubMed Commons below
Acc Chem Res. 2011 Jun 21;44(6):435-46. doi: 10.1021/ar100148g. Epub 2011 Apr 7.

Assembly of macrocycles by zirconocene-mediated, reversible carbon-carbon bond formation.

Author information

  • 1Department of Chemistry, University of California, Berkeley, 94720-1460, United States. tdtilley@berkeley.edu

Abstract

Macrocyclic compounds have attracted considerable attention in numerous applications, including host-guest chemistry, chemical sensing, catalysis, and materials science. A major obstacle, however, is the limited number of convenient, versatile, and high-yielding synthetic routes to functionalized macrocycles. Macrocyclic compounds have been typically synthesized by ring-closing or condensation reactions, but many of these procedures produce mixtures of oligomers and cyclic compounds. As a result, macrocycle syntheses are often associated with difficult separations and low yields. Some successful approaches that circumvent these problems are based on "self-assembly" processes utilizing reversible bond-forming reactions, but for many applications, it is essential that the resulting macrocycle be built with a strong covalent bond network. In this Account, we describe how zirconocene-mediated reductive couplings of alkynes can provide reversible carbon-carbon bond-forming reactions well-suited for this purpose. Zirconocene coupling of alkenes and alkynes has been used extensively as a source of novel, versatile pathways to functionalized organic compounds. Here, we describe the development of zirconocene-mediated reductive couplings as a highly efficient method for the preparation of macrocycles and cages with diverse compositions, sizes, and shapes. This methodology is based on the reversible, regioselective coupling of alkynes with bulky substituents. In particular, silyl substituents provide regioselective, reversible couplings that place them into the α-positions of the resulting zirconacyclopentadiene rings. According to density functional theory (DFT) calculations and kinetic studies, the mechanism of this coupling involves a stepwise process, whereby an insertion of the second alkyne influences regiochemistry through both steric and electronic factors. Zirconocene coupling of diynes that incorporate silyl substituents generates predictable macrocyclic products in very high yields. In the absence of significant steric repulsion, the macrocyclization appears to be entropically driven, thereby providing the smallest strain-free macrocyclic structure. The scope of the reaction has been explored by variation of the spacer group between the alkynyl substituents and by incorporation of functional and chiral groups into the macrocycle. The size and shape of the resulting macrocycles are largely determined by the length and geometry of the dialkyne spacer, especially in the case of terminal trimethylsilyl-substituted diynes. For example, linear, rigid diynes with four or fewer phenylene rings lead to trimeric macrocycles, whereas bent or flexible diynes produce dimers. Depending on the reaction conditions, functional groups (such as N-heterocycles and imines) are tolerated in zirconocene coupling reactions, and in selected cases, they can be used to influence the shape of the final macrocyclic product. More recently, Cp(2)Zr(pyr)(Me(3)SiC≡CSiMe(3)) has been employed as a more general zirconocene synthon; it affords higher yields and increased functional group tolerance. Functional groups can also be incorporated through transformation of the zirconacyclopentadiene products, with acid hydrolysis to the corresponding butadiene being the most efficient derivatization. Furthermore, construction of chiral macrocycles has been accomplished by stereoselective macrocyclizations, and triynes have been coupled into three-dimensional cage compounds. We also discuss various design factors, providing a perspective on the utility of zirconocene-mediated couplings in the assembly of macrocyclic and cage compounds.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk