Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Soc Mass Spectrom. 2011 Apr;22(4):773-83. doi: 10.1007/s13361-011-0075-2. Epub 2011 Feb 15.

Improving proteome coverage on a LTQ-Orbitrap using design of experiments.

Author information

  • 1W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.

Abstract

Design of experiments (DOE) was used to determine improved settings for a LTQ-Orbitrap XL to maximize proteome coverage of Saccharomyces cerevisiae. A total of nine instrument parameters were evaluated with the best values affording an increase of approximately 60% in proteome coverage. Utilizing JMP software, 2 DOE screening design tables were generated and used to specify parameter values for instrument methods. DOE 1, a fractional factorial design, required 32 methods fully resolving the investigation of six instrument parameters involving only half the time necessary for a full factorial design of the same resolution. It was advantageous to complete a full factorial design for the analysis of three additional instrument parameters. Measured with a maximum of 1% false discovery rate, protein groups, unique peptides, and spectral counts gauged instrument performance. Randomized triplicate nanoLC-LTQ-Orbitrap XL MS/MS analysis of the S. cerevisiae digest demonstrated that the following five parameters significantly influenced proteome coverage of the sample: (1) maximum ion trap ionization time; (2) monoisotopic precursor selection; (3) number of MS/MS events; (4) capillary temperature; and (5) tube lens voltage. Minimal influence on the proteome coverage was observed for the remaining four parameters (dynamic exclusion duration, resolving power, minimum count threshold to trigger a MS/MS event, and normalized collision energy). The DOE approach represents a time- and cost-effective method for empirically optimizing MS-based proteomics workflows including sample preparation, LC conditions, and multiple instrument platforms.

© American Society for Mass Spectrometry, 2011

PMID:
21472614
[PubMed - indexed for MEDLINE]
PMCID:
PMC3145359
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk