Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2011 Jul;338(1):240-5. doi: 10.1124/jpet.110.178384. Epub 2011 Apr 4.

Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+ α2δ-1 subunit.

Author information

  • 1Morris K Udall Parkinson’s Disease Research Center of Excellence, Center for Microelectrode Technology, Department ofAnatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA. george.quintero@uky.edu

Abstract

Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α(2)δ subunit of voltage-sensitive Ca(2+) channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K(+)-evoked glutamate release without affecting basal glutamate levels. PGB (0.1-100 μM) exhibited concentration-dependent inhibition of K(+)-evoked glutamate release with an IC(50) value of 5.3 μM. R-(-)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K(+)-evoked glutamate release. The decrease of K(+)-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α(2)δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α(2)δ-1 (subtype) subunit of VSCC, PGB did not affect K(+)-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α(2)δ-1 subunit of VSCC appears to mediate this effect.

PMID:
21464332
[PubMed - indexed for MEDLINE]
PMCID:
PMC3126634
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk