Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 May 27;286(21):18538-46. doi: 10.1074/jbc.M110.214510. Epub 2011 Apr 1.

Enhancement of the rate of pyrophosphate hydrolysis by nonenzymatic catalysts and by inorganic pyrophosphatase.

Author information

  • 1Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.


To estimate the proficiency of inorganic pyrophosphatase as a catalyst, (31)P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PP(i)) in the presence and absence of Mg(2+) at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPP(i)(2-) proceeds with a rate constant of 2.8 × 10(-10) s(-1), whereas E. coli pyrophosphatase was found to have a turnover number of 570 s(-1) under the same conditions. The resulting rate enhancement (2 × 10(12)-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH(‡) = -16.6 kcal/mol). The presence of Mg(2+) ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼ 10(6)-fold. Transfer to dimethyl sulfoxide accelerated PP(i) hydrolysis by reducing the enthalpy of activation. Mg(2+) increased the rate of PP(i) hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk