Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2011 Aug;39(14):6148-60. doi: 10.1093/nar/gkr178. Epub 2011 Apr 1.

Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs.

Author information

  • 1LEA Laboratory of Nuclear RNA metabolism, Centre de Génétique Moléculaire, CNRS-FRE3144, 1 av de la Terrasse, 91190 Gif sur Yvette, France.

Abstract

The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t(6)A(37)) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t(6)A(37) formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.

PMID:
21459853
[PubMed - indexed for MEDLINE]
PMCID:
PMC3152333
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk