Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Carcinogenesis. 2011 Jul;32(7):945-54. doi: 10.1093/carcin/bgr056. Epub 2011 Mar 31.

Genetic architecture of cancer and other complex diseases: lessons learned and future directions.

Author information

  • 1Office of Population Genomics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9307, USA. hindorffl@mail.nih.gov

Abstract

Genome-wide association studies have broadened our understanding of the genetic architecture of cancer to include common variants, in addition to the rare variants previously identified by linkage analysis. We review current knowledge on the genetic architecture of four cancers--breast, lung, prostate and colorectal--for which the balance of common and rare alleles identified ranges from fewer common alleles (lung cancer) to more common alleles (prostate cancer). Although most variants are cancer specific, pleiotropy has been observed for several variants, for example, variants at the 8q24 locus and breast, ovarian and prostate cancers or variants in KITLG in relation to hair color and testicular cancer. Although few studies have been adequately powered to investigate heterogeneity among ancestry groups, effect sizes associated with common variants have been reported to be fairly homogenous among ethnic groups. Some associations appear to be ancestry specific, such as HNF1B, which is associated with prostate cancer in European Americans and Latinos but not in African-Americans. Studies of cancer and other complex diseases suggest that a simple dichotomy between rare and common allelic architectures may be too simplistic and that future research is needed to characterize a fuller spectrum of allele frequency (common (>5%), uncommon (1-5%) and rare (<<1%) alleles) and effect size. In addition, a broadening of the concept of genetic architecture to encompass both population architecture, which reflects differences in exposures, genetic factors and population level risk among diverse groups of people, and genomic architecture, which includes structural, epigenomic and somatic variation, is envisioned.

PMID:
21459759
[PubMed - indexed for MEDLINE]
PMCID:
PMC3140138
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk