Send to:

Choose Destination
See comment in PubMed Commons below
J Comput Biol. 2011 Oct;18(10):1329-38. doi: 10.1089/cmb.2010.0085. Epub 2011 Apr 1.

Biomarker discovery using statistically significant gene sets.

Author information

  • 1Center for Computational Biology and Bioinformatics, Department of Electrical Engineering, Columbia University, New York,New York 10027, USA.


Analysis of large gene expression data sets in the presence and absence of a phenotype can lead to the selection of a group of genes serving as biomarkers jointly predicting the phenotype. Among gene selection methods, filter methods derived from ranked individual genes have been widely used in existing products for diagnosis and prognosis. Univariate filter approaches selecting genes individually, although computationally efficient, often ignore gene interactions inherent in the biological data. On the other hand, multivariate approaches selecting gene subsets are known to have a higher risk of selecting spurious gene subsets due to the overfitting of the vast number of gene subsets evaluated. Here we propose a framework of statistical significance tests for multivariate feature selection that can reduce the risk of selecting spurious gene subsets. Using three existing data sets, we show that our proposed approach is an essential step to identify such a gene set that is generated by a significant interaction of its members, even improving classification performance when compared to established approaches. This technique can be applied for the discovery of robust biomarkers for medical diagnosis.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk