Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2011 May 24;5(5):3568-76. doi: 10.1021/nn103130q. Epub 2011 Apr 6.

Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery.

Author information

  • 1Department of Chemistry, KAIST, Daejeon 305-701, Korea.

Abstract

Among various nanoparticles, the silica nanoparticle (SiNP) is an attractive candidate as a gene delivery carrier due to advantages such as availability in porous forms for encapsulation of drugs and genes, large surface area to load biomacromolecules, biocompatibility, storage stability, and easy preparation in large quantity with low cost. Here, we report on a facile synthesis of monodispersed mesoporous silica nanoparticles (MMSN) possessing very large pores (>15 nm) and application of the nanoparticles to plasmid DNA delivery to human cells. The aminated MMSN with large pores provided a higher loading capacity for plasmids than those with small pores (∼2 nm), and the complex of MMSN with plasmid DNA readily entered into cells without supplementary polymers such as cationic dendrimers. Furthermore, MMSN with large pores could efficiently protect plasmids from nuclease-mediated degradation and showed much higher transfection efficiency of the plasmids encoding luciferase and green fluorescent protein (pLuc, pGFP) compared to MMSN with small pores (∼2 nm).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk