Send to:

Choose Destination
See comment in PubMed Commons below
J Struct Biol. 2011 Jun;174(3):536-41. doi: 10.1016/j.jsb.2011.03.015. Epub 2011 Apr 1.

Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas.

Author information

  • 1Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Wales, UK.


The spatial distribution of collagen fibrils in the corneal stroma is essential for corneal transparency and is primarily regulated by extrafibrillar proteoglycans, which are multi-functional polymers that interact with hybrid type I/V collagen fibrils. In order to understand more about proteoglycan organisation and collagen associations in the cornea, three-dimensional electron microscopy reconstructions of collagen-proteoglycan interactions in the anterior, mid and posterior stroma from a Chst5 knockout mouse, which lacks a keratan sulphate sulphotransferase, were obtained. Both longitudinal and transverse section show sinuous, oversized proteoglycans with near-periodic, orthogonal off-shoots. In many cases, these proteoglycans traverse over 400nm of interfibrillar space interconnecting over 10 collagen fibrils. The reconstructions suggest that multiple chondroitin sulphate/dermatan sulphate proteoglycans have aggregated laterally and, possibly, end-to-end, with orthogonal extensions protruding from the main electron-dense stained filament. We suggest possible mechanisms as to how sulphation differences may lead to this increase in aggregation of proteoglycans in the Chst5-null mouse corneal stroma and how this relates to proteoglycan packing in healthy corneas.

Copyright © 2011 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk