Display Settings:

Format

Send to:

Choose Destination
J Cell Biol. 1990 Aug;111(2):533-41.

Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos.

Author information

  • 1Department of Chemistry, University of California at San Diego, La Jolla 92093.

Abstract

Previous work has demonstrated that the Xenopus protooncogene mosxe can induce the maturation of prophase-arrested Xenopus oocytes. Recently, we showed that mosxe can transform murine NIH3T3 fibroblasts, although it exhibited only 1-2% of the transforming activity of the v-mos oncogene. In this study we have investigated the ability of the v-mos protein to substitute for the mosxe protein in stimulating Xenopus oocytes to complete meiosis. Microinjection of in vitro synthesized RNAs encoding either the mosxe or v-mos proteins stimulates resting oocytes to undergo germinal vesicle breakdown. Microinjection of an antisense oligonucleotide spanning the initiation codon of the mosxe gene blocked progesterone-induced oocyte maturation. When oocytes were microinjected first with the mosxe antisense oligonucleotide, and subsequently with in vitro synthesized v-mos RNA, meiotic maturation was rescued as evidenced by germinal vesicle breakdown. The v-mos protein exhibited in vitro kinase activity when recovered by immunoprecipitation from either microinjected Xenopus oocytes or transfected monkey COS-1 cells; however, in parallel experiments, we were unable to detect in vitro kinase activity associated with the mosxe protein. Microinjection of in vitro synthesized v-mos RNA into cleaving Xenopus embryos resulted in mitotic arrest, demonstrating that the v-mos protein can function like the mosxe protein as a component of cytostatic factor. These results exemplify the apparently conflicting effects of the v-mos protein, namely, its ability to induce maturation of oocytes, its ability to arrest mitotic cleavage of Xenopus embryo, and its ability to transform mammalian fibroblasts.

PMID:
2143197
[PubMed - indexed for MEDLINE]
PMCID:
PMC2116195
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk