Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Trauma. 2011 Oct;71(4):E87-93. doi: 10.1097/TA.0b013e31820932e2.

Agmatine-promoted angiogenesis, neurogenesis, and inhibition of gliosis-reduced traumatic brain injury in rats.

Author information

  • 1Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan.

Abstract

BACKGROUND:

The mechanisms of agmatine-induced neuroprotective effects in traumatic brain injury (TBI) remain unclear. This study was to test whether inhibition of gliosis, angiogenesis, and neurogenesis attenuating TBI could be agmatine stimulated.

METHODS:

Anesthetized rats were randomly assigned to sham-operated group, TBI rats treated with saline (1 mL/kg, intraperitoneally), or TBI rats treated with agmatine (50 mg/kg, intraperitoneally). Saline or agmatine was injected 5 minutes after TBI and again once daily for the next 3 postoperative days.

RESULTS:

Agmatine therapy in rats significantly attenuated TBI-induced motor function deficits (62° vs. 52° maximal angle) and cerebral infarction (88 mm vs. 216 mm), significantly reduced TBI-induced neuronal (9 NeuN-TUNEL double positive cells vs. 60 NeuN-TUNEL double positive cells) and glial (2 GFAP-TUNEL double positive cells vs. 20 GFAP-TUNEL double positive cells) apoptosis (increased TUNEL-positive and caspase-3-positive cells), neuronal loss (82 NeuN-positive cells vs. 60 NeuN-positive cells), gliosis (35 GFAP-positive cells vs. 72 GFAP-positive cells; 60 Iba1-positive cells vs. 90 Iba1-positive cells), and neurotoxicity (30 n-NOS-positive cells vs. 90 n-NOS-positive cells; 35 3-NT-positive cells vs. 90 3-NT-positive cells), and significantly promoted angiogenesis (3 BrdU/endothelial cells vs. 0.5 BrdU/endothelial cells; 50 vascular endothelial growth factor positive cells vs. 20 vascular endothelial growth factor-positive cells) and neurogenesis (27 BrdU/NeuN positive cells vs. 15 BrdU/NeuN positive cells).

CONCLUSIONS:

Resultantly, agmatine therapy may attenuate TBI in rats via promoting angiogenesis, neurogenesis, and inhibition of gliosis.

PMID:
21427621
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk