Send to:

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 2011 Feb;31(2):117-30. doi: 10.1093/treephys/tpr002. Epub 2011 Mar 22.

Elevated CO₂ enhances leaf senescence during extreme drought in a temperate forest.

Author information

  • 1Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA.


In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E(CO(2))) or ambient (A(CO(2))) CO(2) treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO(2) and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E(CO(2)) on premature leaf senescence. Elevated CO(2) reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E(CO(2)) plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO(2)) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to ∼40% less than A(net) in A(CO(2)) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E(CO(2)). While E(CO(2)) can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E(CO(2)) to temperate forest species during extreme weather events.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk