Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Hematol. 2011 May;18(3):171-6. doi: 10.1097/MOH.0b013e328345a180.

MicroRNA-mediated regulation of the angiogenic switch.

Author information

  • 1Moores UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, California, USA.

Abstract

PURPOSE OF REVIEW:

It has been known for decades that in order to grow, tumors need to activate quiescent endothelial cells to form a functional vascular network, a process termed 'angiogenesis'. However, the molecular determinants that reverse this endothelial quiescence to facilitate pathological angiogenesis are not yet completely understood. This review examines a critical regulatory switch at the level of Ras that activates this angiogenic switch process and the role that microRNAs play in this process.

RECENT FINDINGS:

In the last few years, microRNAs, a new class of small RNA molecules, have emerged as key regulators of several cellular processes, including angiogenesis. MicroRNAs such as miR-126, miR-296, and miR-92a have been shown to play important roles in angiogenesis. We recently described how miR-132, an angiogenic growth factor inducible microRNA in the endothelium, facilitates pathological angiogenesis by downregulating p120RasGAP, a molecular brake for Ras. Importantly, targeting miR-132 with a complementary, synthetic antimicroRNA restored the brake and decreased angiogenesis and tumor burden in multiple tumor models. Taken together, emerging evidence suggests a central role for microRNAs downstream of multiple growth factors in regulating endothelial proliferation, migration, and vascular patterning.

SUMMARY:

Further research into miR-132-p120RasGAP biology and more broadly, microRNA regulation of Ras pathways in the endothelium will not only advance our understanding of angiogenesis but also provide opportunities for therapeutic intervention.

PMID:
21423013
[PubMed - indexed for MEDLINE]
PMCID:
PMC3159578
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Write to the Help Desk