Display Settings:

Format

Send to:

Choose Destination

Targeted deep resequencing of the human cancer genome using next-generation technologies.

Author information

  • 1Stanford Genome Technology Center and Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 3215, Stanford, California 94305, USA.

Abstract

Next-generation sequencing technologies have revolutionized our ability to identify genetic variants, either germline or somatic point mutations, that occur in cancer. Parallelization and miniaturization of DNA sequencing enables massive data throughput and for the first time, large-scale, nucleotide resolution views of cancer genomes can be achieved. Systematic, large-scale sequencing surveys have revealed that the genetic spectrum of mutations in cancers appears to be highly complex with numerous low frequency bystander somatic variations, and a limited number of common, frequently mutated genes. Large sample sizes and deeper resequencing are much needed in resolving clinical and biological relevance of the mutations as well as in detecting somatic variants in heterogeneous samples and cancer cell sub-populations. However, even with the next-generation sequencing technologies, the overwhelming size of the human genome and need for very high fold coverage represents a major challenge for up-scaling cancer genome sequencing projects. Assays to target, capture, enrich or partition disease-specific regions of the genome offer immediate solutions for reducing the complexity of the sequencing libraries. Integration of targeted DNA capture assays and next-generation deep resequencing improves the ability to identify clinically and biologically relevant mutations.

PMID:
21415896
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk