Endohedral beryllium atoms in ten-vertex germanium clusters: effect of a small interstitial atom on the cluster geometry

J Phys Chem A. 2011 Apr 7;115(13):2847-52. doi: 10.1021/jp110673s. Epub 2011 Mar 16.

Abstract

Ten-vertex clusters are unusually versatile because polyhedra with 3-, 4-, and 5-fold symmetry are possible and are found in experimentally known structures. Such clusters therefore provide useful probes for subtle effects on cluster structure such as changing the electron count or introducing an interstitial atom. In this connection, DFT shows that one of the smallest possible interstitial atoms, namely beryllium, has relatively little effect on the structures of Be@Ge(10)(z) (z = +2, 0, -2, -4) clusters. Thus the same C(3v) and D(4d) polyhedra are found as the lowest energy structures for the isoelectronic pairs Be@Ge(10)(2+)/Ge(10) and Be@Ge(10)/Ge(10)(2-). Even for the more complicated potential energy surfaces of the Be@Ge(10)(2-)/Ge(10)(4-) and Be@Ge(10)(4-)/Ge(10)(6-) systems, the lowest energy structures are remarkably similar. Thus the same C(2v) structures are the global minima for both Be@Ge(10)(2-) and Ge(10)(4-). Similarly, the same slipped pentagonal prism structures are the global minima for both Be@Ge(10)(4-) and Ge(10)(6-).