Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Med Hypotheses. 2011 Jun;76(6):847-54. doi: 10.1016/j.mehy.2011.02.034. Epub 2011 Mar 12.

Stress, exercise, and Alzheimer's disease: a neurovascular pathway.

Author information

  • 1University of California San Diego, School of Medicine, Department of Psychiatry, San Diego, CA, USA. dnation@ucsd.edu

Abstract

Genetic factors are known to play a role in Alzheimer's disease (AD) vulnerability, yet less than 1% of incident AD cases are directly linked to genetic causes, suggesting that environmental variables likely play a role in the majority of cases. Several recent human and animal studies have examined the effects of behavioral factors, specifically psychological stress and exercise, on AD vulnerability. Numerous animal studies have found that, while stress exacerbates neuropathological changes associated with AD, exercise reduces these changes. Some human studies suggest that psychological stress can increase the risk of developing AD, while other studies suggest that exercise can significantly reduce AD risk. Most animal studies investigating the mechanisms responsible for the effects of these behavioral factors have focused on neuronal processes, including the effects of stress hormones and neurotrophic factors on the neuropathological hallmarks of AD, namely amyloid-beta (Aβ) deposition and tau-phosphorylation. However, cumulative evidence indicates that, in humans, AD is associated with the presence of cerebrovascular disease, and cardiovascular risk factors are associated with increased risk of developing AD. There is an extensive literature demonstrating that behavioral factors, particularly stress and exercise, can powerfully modulate the pathophysiology of vascular disease. Thus, the following model proposes that the influence of stress and exercise on AD risk may be partially due to the effects of these behavioral factors on vascular homeostasis and pathology. These effects are likely due to both indirect modification of AD risk through alterations in vascular risk factors, such as hypertension, diabetes, and aortic stiffening, as well as direct influence on the cerebrovasculature, including changes in cerebral blood flow, angiogenesis, and vascular disease. Future studies examining the effects of behavioral factors on AD risk should incorporate measures of both peripheral and cerebral vascular function to further our understanding of the mechanisms by which behavior can modify AD susceptibility. Greater knowledge of the molecular mechanisms behind these behavioral effects would further our understanding of the disease and lead to innovative treatment and preventive approaches.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21398043
[PubMed - indexed for MEDLINE]
PMCID:
PMC3094492
Free PMC Article

Images from this publication.See all images (1)Free text

Fig. 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk